Fabrication of CeO2–MOx (M = Cu, Co, Ni) composite yolk–shell nanospheres with enhanced catalytic properties for CO oxidation

نویسندگان

  • Ling Liu
  • Jingjing Shi
  • Hongxia Cao
  • Ruiyu Wang
  • Ziwu Liu
چکیده

CeO2-MO x (M = Cu, Co, Ni) composite yolk-shell nanospheres with uniform size were fabricated by a general wet-chemical approach. It involved a non-equilibrium heat-treatment of Ce coordination polymer colloidal spheres (Ce-CPCSs) with a proper heating rate to produce CeO2 yolk-shell nanospheres, followed by a solvothermal treatment of as-synthesized CeO2 with M(CH3COO)2 in ethanol solution. During the solvothermal process, highly dispersed MO x species were decorated on the surface of CeO2 yolk-shell nanospheres to form CeO2-MO x composites. As a CO oxidation catalyst, the CeO2-MO x composite yolk-shell nanospheres showed strikingly higher catalytic activity than naked CeO2 due to the strong synergistic interaction at the interface sites between MO x and CeO2. Cycling tests demonstrate the good cycle stability of these yolk-shell nanospheres. The initial concentration of M(CH3COO)2·xH2O in the synthesis process played a significant role in catalytic performance for CO oxidation. Impressively, complete CO conversion as reached at a relatively low temperature of 145 °C over the CeO2-CuO x -2 sample. Furthermore, the CeO2-CuO x catalyst is more active than the CeO2-CoO x and CeO2-NiO catalysts, indicating that the catalytic activity is correlates with the metal oxide. Additionally, this versatile synthesis approach can be expected to create other ceria-based composite oxide systems with various structures for a broad range of technical applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of electroplating parameters on microstructure and amount of ceramic particle deposition in Ni-Co-CeO2-ZrO2 composite coating

Austenitic stainless steels are high performance steels that have various applications in solid oxide fuel cells and boiler tubes under high temperature operating conditions. The Cr2O3 oxide layer formed on the steel surface becomes unstable at high temperatures and reduces the oxidation resistance of the steel. Therefore, protection of these steels at high temperatures is essential. Therefore,...

متن کامل

Comparison of Binary and Ternary ‎Compositions of Ni-Co-Cu Oxides/VACNTs ‎Electrodes for Energy Storage Devices with ‎Excellent Capacitive Behaviour

   Electrochemical performance of binary and ternary oxides composed of Ni, Co and Cu produced over a 3-dimensional substrate of vertically aligned carbon nano-tubes (VACNT) as electrodes for aqueous energy sources, is reported and compared in this paper. VACNTs were fabricated inside a DC-plasma enhanced chemical vapor deposition chamber and composite materials fabricated by thermal decomp...

متن کامل

Activity of Cu-Co-M (M= Ce, Ni, Au, Mg) catalysts prepared by coprecipitation method, calcined at high temperature for CO oxidation

The present study deals with analysis of the activity of catalysts prepared by addition of different metals to Copper and Cobalt based catalysts for CO oxidation and the variation in activity caused by changes in composition. A series of catalysts were prepared with Cu:Co molar ratio 1:4 and a third metal (M= Ce, Ni, Au, Mg) was added in three different quantities. Compositions were prepared by...

متن کامل

Computational Design of a CeO2‐Supported Pd-Based Bimetallic Nanorod for CO Oxidation

Engineering a bimetallic system with complementary chemical properties can be an effective way of tuning catalytic activity. In this work, CO oxidation on CeO2(111)supported Pd-based bimetallic nanorods was investigated using density functional theory calculations corrected by on-site Coulomb interactions. We studied a series of CeO2(111)supported Pd-based bimetallic nanorods (Pd−X, where X = A...

متن کامل

Activity of Cu-Co-M (M= Ce, Ni, Au, Mg) catalysts prepared by coprecipitation method, calcined at high temperature for CO oxidation

The present study deals with analysis of the activity of catalysts prepared by addition of different metals to Copper and Cobalt based catalysts for CO oxidation and the variation in activity caused by changes in composition. A series of catalysts were prepared with Cu:Co molar ratio 1:4 and a third metal (M= Ce, Ni, Au, Mg) was added in three different quantities. Compositions were prepared by...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017